Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1330844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544527

RESUMO

Human papillomavirus (HPV) is a sexually transmitted virus, which infects approximately 80% of all men and women at some time in their lives. Usually, the infection is resolved successfully by the body's immune system. Persistent infection with high-risk HPV (hrHPV) is necessary but not sufficient for cervical cancer development, and additional factors, such as the vaginal microbiome (vaginome), are thought to be involved. The aim of this study is to investigate whether either vaginal dysbiosis (imbalance in vaginal bacterial composition) or sexually transmitted pathogens, e.g., Chlamydia trachomatis (CT), are possible cofactors for hrHPV infection and HPV-induced cervical dysplasia in asymptomatic women attending the Dutch Cervical Cancer Screening Program. In this study, 492 hrHPV-positive and 500 hrHPV-negative cervical smears from women attending the Screening Program were included. Age and cytology were known for the hrHPV-positive samples. All cervical smears were diluted in Aptima® specimen transfer medium and tested with Aptima® transcription-mediated amplification assays targeting CT, Neisseria gonorrhoeae (NG), Mycoplasma genitalium (MG), Candida spp. (CS), C. glabrata (CG), Trichomonas vaginalis (TV), and bacterial vaginosis (BV). The prevalences of CT, NG, MG, CS, CG, TV, and BV in this cohort were found to be 1.9%, 0.0%, 1.7%, 5.4%, 1.4%, 0.1%, and 27.2%, respectively. When comparing HPV groups, it was found that CT, MG, and BV had a significantly higher prevalence in hrHPV-positive smears as compared with hrHPV-negative samples (for all p < 0.001). No significant differences were found when comparing different age groups and cytology outcomes. In conclusion, vaginal dysbiosis seems associated with hrHPV infection in women attending the Dutch Cervical Cancer Screening Program.


Assuntos
Infecções por Papillomavirus , Trichomonas vaginalis , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Detecção Precoce de Câncer , Disbiose/diagnóstico , Esfregaço Vaginal , Neisseria gonorrhoeae , Chlamydia trachomatis , Programas de Rastreamento
2.
Clin Chem ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484302

RESUMO

BACKGROUND: Identification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands). METHODS: Aliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18-21, and KRAS exon 2-3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance. RESULTS: A broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately. CONCLUSIONS: Divergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine.

3.
Clin Chem ; 68(7): 963-972, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35616097

RESUMO

BACKGROUND: Efficient recovery of circulating tumor DNA (ctDNA) depends on the quantity and quality of circulating cell-free DNA (ccfDNA). Here, we evaluated whether various ccfDNA extraction methods routinely applied in Dutch laboratories affect ccfDNA yield, ccfDNA integrity, and mutant ctDNA detection, using identical lung cancer patient-derived plasma samples. METHODS: Aliquots of 4 high-volume diagnostic leukapheresis plasma samples and one artificial reference plasma sample with predetermined tumor-derived mutations were distributed among 14 Dutch laboratories. Extractions of ccfDNA were performed according to local routine standard operating procedures and were analyzed at a central reference laboratory for mutant detection and assessment of ccfDNA quantity and integrity. RESULTS: Mutant molecule levels in extracted ccfDNA samples varied considerably between laboratories, but there was no indication of consistent above or below average performance. Compared to silica membrane-based methods, samples extracted with magnetic beads-based kits revealed an overall lower total ccfDNA yield (-29%; P < 0.0001) and recovered fewer mutant molecules (-41%; P < 0.01). The variant allelic frequency and sample integrity were similar. In samples with a higher-than-average total ccfDNA yield, an augmented recovery of mutant molecules was observed. CONCLUSIONS: In the Netherlands, we encountered diversity in preanalytical workflows with potential consequences on mutant ctDNA detection in clinical practice. Silica membrane-based methodologies resulted in the highest total ccfDNA yield and are therefore preferred to detect low copy numbers of relevant mutations. Harmonization of the extraction workflow for accurate quantification and sensitive detection is required to prevent introduction of technical divergence in the preanalytical phase and reduce interlaboratory discrepancies.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Pulmonares , Patologia Clínica , DNA Tumoral Circulante/genética , Humanos , Dióxido de Silício
4.
APMIS ; 128(8): 497-505, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32562292

RESUMO

Primary high-risk human papillomavirus (hrHPV) DNA testing has been introduced in several countries worldwide, including The Netherlands. The objective of this study was to compare three automated workflow procedures for hrHPV testing of which the hrHPV detection assays meet the international guidelines for HPV testing. To mimic a realistic screening situation, we aimed to process 15 000 residual PreservCyt cervical samples in a period of 3 months. During a 3 months period, four technicians were involved in processing 5000 specimens per month on three automated platforms, (1) Qiagen Digene® HC2 HPV DNA test (HC2, signal amplification); (2) Roche Cobas® HPV test (DNA amplification), and (3) Hologic Aptima® HPV test (RNA amplification). We measured and scored general aspects (time-to-results, hands-on-time (HOT)), maintenance, pre-run, run and post-run aspects, inventory (orders, storage), and number of errors on a scale from 1 to 10. As determined for one complete workflow each, maximum processing capacity and HOT were 296 samples and 2 h:55 m, 282 samples and 3 h:20 m, and 264 samples and 4 h:15 m for Aptima, Cobas, and HC2, respectively. The mean throughput time per run was 5 h:51 m for Cobas in which 94 samples could be processed. For Aptima, the mean throughput time per run was 6 h:30 m for 60 samples. Mean throughput time for HC2 is longer since results were provided on day 2. In this study, the fully automated Aptima workflow scores best with a 7.2, followed by Cobas with a score of 7.1 and HC2 with a score of 5.8. Although all HPV tests used in this comparison meet the international test guidelines, the performance (workflow) characteristics of the assays vary widely. A specific choice of a laboratory for high-throughput testing can be different based on the laboratory's demands, but also hands-on-time, time-to-results/ # samples, maintenance, pre-run, run and post-run parameters, consumables, technical support, and number of errors are important operational factors for the selection of a fully automated workflow for hrHPV testing.


Assuntos
Automação Laboratorial/métodos , Ensaios de Triagem em Larga Escala , Testes de DNA para Papilomavírus Humano/métodos , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Fluxo de Trabalho , Feminino , Humanos , Países Baixos , Papillomaviridae/classificação , Papillomaviridae/genética , Estudos Retrospectivos , Fatores de Tempo
6.
Virchows Arch ; 474(6): 673-680, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30888490

RESUMO

Next-generation sequencing (NGS) panel analysis on DNA from formalin-fixed paraffin-embedded (FFPE) tissue is increasingly used to also identify actionable copy number gains (gene amplifications) in addition to sequence variants. While guidelines for the reporting of sequence variants are available, guidance with respect to reporting copy number gains from gene-panel NGS data is limited. Here, we report on Dutch consensus recommendations obtained in the context of the national Predictive Analysis for THerapy (PATH) project, which aims to optimize and harmonize routine diagnostics in molecular pathology. We briefly discuss two common approaches to detect gene copy number gains from NGS data, i.e., the relative coverage and B-allele frequencies. In addition, we provide recommendations for reporting gene copy gains for clinical purposes. In addition to general QC metrics associated with NGS in routine diagnostics, it is recommended to include clinically relevant quantitative parameters of copy number gains in the clinical report, such as (i) relative coverage and estimated copy numbers in neoplastic cells, (ii) statistical scores to show significance (e.g., z-scores), and (iii) the sensitivity of the assay and restrictions of NGS-based detection of copy number gains. Collectively, this information can guide clinical and analytical decisions such as the reliable detection of high-level gene amplifications and the requirement for additional in situ assays in case of borderline results or limited sensitivity.


Assuntos
Variações do Número de Cópias de DNA/fisiologia , Dosagem de Genes/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética , Patologia Molecular/métodos , Análise de Sequência de DNA/métodos
7.
Diagn Pathol ; 10: 56, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26022247

RESUMO

BACKGROUND: Breast cancer is a heterogeneous disease with various histological features and molecular markers. These are utilized for the prediction of clinical outcome and therapeutic decision making. In addition to well established markers such as HER2 overexpression and estrogen and progesterone receptor (ER and PR) status, chromosomal instability is evolving as an important hallmark of cancers. The HER2/TOP2A locus is of great importance in breast cancer. The copy number variability at this locus has been proposed to be a marker for the degree of chromosomal instability. We therefore developed a Single Nucleotide Polymorphism (SNP) assay to evaluate allelic imbalance at the HER2/TOP2A locus in three different entities of primary breast tumors. METHODS: Eleven SNPs were carefully selected and detected by real time PCR using DNA extracted from paired (histologically normal and tumor) paraffin-embedded tissues. Primary breast tumors of 44 patients were included, 15 tumors with HER2 overexpression, 16 triple negative tumors, defined by the absence of HER2 overexpression and a negative ER and PR status and 13 ER and PR positive tumors without HER2 overexpression. As controls, histologically normal breast tissues from 10 patients with no breast tumor were included. RESULTS: Allelic imbalance was observed in 13/15 (87 %) HER2 positive tumors, the remaining 2 being inconclusive. Of the 16 triple negative tumors, 12 (75 %) displayed instability, 3 (19 %) displayed no instability, and 1 was inconclusive. Of the 13 hormone receptor positive tumors, 5 (38 %) displayed allelic imbalance, while 8 did not. CONCLUSIONS: We conclude that the SNP assay is suitable for rapid testing of allelic (im)balance at the HER2/TOP2A locus using paraffin-embedded tissues. Based on allelic imbalance at this locus, both triple negative and ER and PR positive breast tumors can be subcategorized. The clinical relevance of the allelic (im)balance status at the HER2/TOP2A locus in breast cancer is subject of future study. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2086062232155220.


Assuntos
Desequilíbrio Alélico , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único , Receptor ErbB-2/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Biomarcadores Tumorais/análise , Biópsia , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Hibridização In Situ , Pessoa de Meia-Idade , Inclusão em Parafina , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/patologia , Adulto Jovem
8.
PLoS One ; 7(7): e38362, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768290

RESUMO

During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n=6 25-50% and n=6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25-50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci.


Assuntos
Janus Quinase 2/genética , Perda de Heterozigosidade , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Feminino , Humanos , Janus Quinase 2/metabolismo , Masculino , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/patologia
9.
J Mol Diagn ; 13(5): 558-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21723417

RESUMO

A single G-to-T missense mutation in the gene for the JAK2 tyrosine kinase, leading to a V617F amino acid substitution, is commonly found in several myeloproliferative neoplasms. Reliable quantification of this mutant allele is of increasing clinical and therapeutic interest in predicting and diagnosing this group of neoplasms. Because JAK2V617F is somatically acquired and may be followed by loss of heterozygosity, the percentage of mutant versus wild-type DNA in blood can vary between 0% and almost 100%. Therefore, we developed a real-time PCR assay for detection and quantification of the low-to-high range of the JAK2V617F allele burden. To allow the assay to meet these criteria, amplification of the wild-type JAK2 was blocked with a peptide nucleic acid oligonucleotide. JAK2V617F patient DNA diluted in JAK2 wild-type DNA could be amplified linearly from 0.05% to 100%, with acceptable reproducibility of quantification. The sensitivity of the assay was 0.05% (n = 3 of 3). In 9 of 100 healthy blood donors, a weak positive/background signal was observed in DNA isolated from blood, corresponding to approximately 0.01% JAK2V617F allele. In one healthy individual, we observed this signal in duplicate. The clinical relevance of this finding is not clear. By inhibiting amplification of the wild-type allele, we developed a sensitive and linear real-time PCR assay to detect and quantify JAK2V617F.


Assuntos
Alelos , Substituição de Aminoácidos/genética , Janus Quinase 2/genética , Ácidos Nucleicos Peptídicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Estudos de Coortes , Saúde , Humanos , Oligonucleotídeos , Padrões de Referência , Sensibilidade e Especificidade , Doadores de Tecidos
10.
Appl Environ Microbiol ; 77(6): 2051-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257816

RESUMO

Coxiella burnetii is the etiological agent of Q fever. Currently, the Netherlands is facing the largest Q fever epidemic ever, with almost 4,000 notified human cases. Although the presence of a hypervirulent strain is hypothesized, epidemiological evidence, such as the animal reservoir(s) and genotype of the C. burnetii strain(s) involved, is still lacking. We developed a single-nucleotide-polymorphism (SNP) genotyping assay directly applicable to clinical samples. Ten discriminatory SNPs were carefully selected and detected by real-time PCR. SNP genotyping appeared to be highly suitable for discrimination of C. burnetii strains and easy to perform with clinical samples. With this new method, we show that the Dutch outbreak is caused by at least 5 different C. burnetii genotypes. SNP typing of 14 human samples from the outbreak revealed the presence of 3 dissimilar genotypes. Two genotypes were also present in livestock at 9 farms in the outbreak area. SNP analyses of bulk milk from 5 other farms, commercial cow milk, and cow colostrum revealed 2 additional genotypes that were not detected in humans. SNP genotyping data from clinical samples clearly demonstrate that at least 5 different C. burnetii genotypes are involved in the Dutch outbreak.


Assuntos
Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Febre Q/epidemiologia , Febre Q/microbiologia , Coxiella burnetii/classificação , Genótipo , Humanos , Países Baixos/epidemiologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...